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Abstract

While Vision-Language-Action (VLA) models show strong generalizability in
various tasks, real-world deployment of robotic policy still requires large-scale,
high-quality human expert demonstrations. However, passive data collection via
human teleoperation is costly, hard to scale, and often biased toward passive
demonstrations with limited diversity. To address this, we propose Genie Centurion
(GCENT), a scalable and general data collection paradigm based on human rewind-
and-refine guidance. When the robot execution failures occur, GCENT enables
the system revert to a previous state with a rewind mechanism, after which a tele-
operator provides corrective demonstrations to refine the policy. This framework
supports a one-human-to-many-robots supervision scheme with a Task Sentinel
module, which autonomously predicts task success and solicits human intervention
when necessary, enabling scalable supervision. Empirical results show that GCENT
achieves up to 40% higher task success rates than state-of-the-art data collection
methods, and reaches comparable performance using less than half the data. We
also quantify the data yield-to-effort ratio under multi-robot scenarios, demon-
strating GCENT’s potential for scalable and cost-efficient robot policy training in
real-world environments.

1 Introduction

In the field of robotics, the primary goal is to enable robots to perform productive tasks in real-
world environments. Recent advances leverage large models, especially Vision-Language-Action
(VLA) models [4, 5, 40, 28, 34, 52, 43], which can interpret high-level instructions and generate
corresponding actions based on visual observations. Training such models typically requires large
amounts of human demonstration data for imitation learning. However, obtaining large-scale and
high-quality demonstrations remains a significant bottleneck for deploying powerful robotic systems
in real-world scenarios.

Currently, the predominant imitation learning data collection approach is human teleoperation, which,
although effective, is expensive and time-consuming [51, 10, 60]. Due to the direct one-to-one
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correspondence between human operation time and collected data, one hour of robot data typically
requires at least one hour of skilled human operation. The actual efficiency is usually much lower
than 1:1, considering additional overhead from environment setup, task resets, and human errors,
significantly reducing the net usable data collected per operator hour. This inefficiency presents a
major barrier to scaling imitation learning datasets for robotic systems.

Alternative approaches include sim-to-real transfer and offline RL [26, 37, 39, 30]. However, sim-
to-real methods often suffer from the reality gap, especially in contact-rich and high-precision
manipulation tasks, where reliable transfer is not guaranteed. Offline RL approaches, on the other
hand, are limited by distribution shift and typically fail to cover critical regions such as failure and
recovery states. The Dataset Aggregation (DAgger) algorithm [46] improves data efficiency by
querying expert corrections in the states visited by the policy autonomous execution.

To address these challenges, we propose GCENT, a DAgger-inspired data collection framework
tailored for efficient real-world robotic policy learning. In this paradigm, the human operator acts
primarily as a guardian, intervening only when the policy fails or is about to fail. GCENT introduces a
rewind mechanism that allows the operator to reset the robot to a recent valid state, thereby enhancing
the diversity and coverage of critical state space.

Additionally, GCENT incorporates a Task Sentinel module, a vision-language-based model designed
to autonomously detect task completion states and request human intervention as necessary. This
progressively reduces reliance on continuous human supervision. We hypothesize that structured,
failure-triggered human interventions significantly improve data efficiency and accelerate the opti-
mization of robot policies, as compared to conventional continuous teleoperation methods.

Our primary contributions include:

1. We introduce Genie Centurion (GCENT), a unified framework designed for efficient robot policy
training through corrective interventions triggered by failures, complemented by a rewind mechanism
to enhance state-space coverage.

2. We perform extensive real-world experiments comparing GCENT to standard teleoperation-
based data collection methods, demonstrating significant improvements in task success rates and
substantially reduced human operational effort.

3. We propose the Task Sentinel module, which solicits human interventions selectively by predicting
task completion over the policy autonomous execution process. Our experimental results demonstrate
that Task Sentinel enables scalable supervision, allowing a single operator to effectively oversee
multiple robots simultaneously.

Figure 1: Overall GCENT System Pipeline. Illustrating the workflow, including initialization,
deployment (inference, monitoring, rewind & correction, data aggregation), and retraining. As
deployment iterations proceed, the single-robot success rate increases, and the intervention rate
decreases, allowing a single operator to supervise more robots, thereby enhancing the efficiency of
the data loop.
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2 Related Work

2.1 Learning-Based Manipulation and the Role of Data

Learning-based approaches have demonstrated promising capabilities for robotic manipulation,
particularly in multi-task, multi-modal, and open-ended instruction-following scenarios. Most
existing methods follow adopt a two-stage training paradigm: large-scale pre-training followed by
task-specific fine-tuning[29, 50]. In this setting, the performance heavily depends on the quality and
diversity of the fine-tune data. Recent studies indicate that merely increasing data quantity is not
sufficient for robust generalization; instead, factors such as coverage of failure cases, and diversity of
environments and objects have a greater impact [31, 32]. To address this, some researches construct
standard cross-embodiment dataset on various tasks [41, 53, 1], while others explore efficient
collection strategies, such as compressing diverse spatial and linguistic exploration into minimal
demonstrations [22]. However, most approaches still focus on repetitive collecting full trajectories
and lack mechanisms to capture policy failed states systematically, limiting policy performance
convergence efficiency.

2.2 Interactive Imitation Learning and Human-in-the-loop Supervision

To address the distribution shift in behavior cloning (BC) [59, 9], DAgger [46] introduces expert su-
pervision during rollouts to iteratively aggregate the data distribution. SafeDAgger and LazyDAgger
[58, 20] reduce human burden through safety prediction and switching cost modeling. HG-DAgger
[27] uses human expert as a gating function and maintaining exclusive control authority. Ensem-
bleDAgger [38] leverages an ensemble-based uncertainty estimation, while ThriftyDAgger [19] learns
a budget-aware switching policy to triggers human interventions at high-risk states. While these
works improve intervention strategies, they are mostly designed for simulation or driving contexts,
with limited application to real-world manipulation. RoboCopilot [55, 56] emphasizing fluent control
transfer, but still relying on constant human monitoring. Fleet-DAgger [21] and SIRIUS-FLEET [33]
extend these strategies to multi-robot systems with supervision scheduling and prediction, but lack
verifying on real-world complex tasks suck as bimanual, long-horizon and high-precision tasks. In
contrast to recent approaches using VQA-style success checking [35, 36, 13], we adopt a reward
model-style value predictor head as Task Sentinel that independently determines whether each step
has succeeded. This module is fine-tuned on a InternVL2.5-2B and can be deployed alongside the
policy on real robots, ensuring both real-time inference and deployment stability.

2.3 Data Collection Interfaces and Shared Autonomy Systems

Learning-based robotic manipulation systems strongly depend on high-quality human demonstrations.
Teleoperation remains the predominant data collection approach due to its intuitive control and high
precision [11, 23]. Vision-based teleoperation systems [42, 8, 18] offer simplified setups but often
induce operator fatigue due to absolute positional retargeting. Systems based on exoskeletons and
motion capture [54, 14, 15, 3, 16] enhance teleoperation intuitiveness, but their reliance on extensive
hardware setups reduces portability and ease of deployment. These devices has limited capability to
switch between different modes. We uses virtual reality as human-robot interfaces, enhanced ability
to systematically capture structured demonstration data by multiple modes, especially failure cases
and their corresponding corrective actions.

To alleviate human demonstration workload and enhance robot-operator collaboration, shared au-
tonomy paradigms gain increasing attention. Early studies introduced adjustable authority to fa-
cilitate smooth human-robot collaboration[48, 47, 49, 44]. Later approaches improved shared
autonomy through methods such as intent prediction and eye-hand behavior in single-robot scenarios
[25, 12, 24, 2, 17]. Further research [45, 57] then explore the topic in multi-robot settings, to improved
the efficiency of human supervision.

While prior approaches primarily focus on real-time shared control, our proposed method comple-
ments existing work by enabling corrections specifically at failure points, decoupled from the robot’s
real-time execution. This strategy creates opportunities for scalable and targeted data collection.
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Figure 2: Teleoperation Setup Illustrating of button assignments for the dual 6-DoF controllers and
their functions in GCENT.

3 GCENT Data Collection System

We designed and deployed an effective data collection system to support the GCENT learning
paradigm. This section introduces the hardware configuration and the processing pipeline. Core
functionalities like Task Sentinel, interactive rewind and correction mechanism are discussed in
detail.

3.1 Hardware Setup and Teleoperation

The GCENT data collection system is built upon the AgiBot G01[1] robotic platform. The operator
station utilizes a VR system, where two 6-DoF VR controllers are used to independently control
the robot’s dual-arm end-effectors and to execute operations such as intervention and rewind. This
intuitive and precise hardware interface enables operators to effectively monitor and intervene during
policy rollouts.

As shown in Figure 2, the system assigns different operations for each key-button. The Y button
initiates the inference mode, starts default policy execution on the robot. The X button triggers the
rewind mode, restoring the system to a previous time point. The side gripper initiates the takeover
mode, enables manual control for human demonstration or correction. The A button reset the system,
returns the robot to initial pose and ends the current data collection. Other buttons are assigned to
control rest components of the robot’s body.

3.2 Data Processing Pipeline

The GCENT data collection system operates within a continuously iterating data loop. It is designed
to progressively refine the policy model through online interaction. The goal is to gradually reduce
the intervention rate and increase the success rate. The core process is illustrated in Figure 1.

1. Initialization: A small set of seed data, D0, is collected through human teleoperation to
train an initial policy π0.

2. Deployment: This stage includes four key steps:
(a) Inference: The robot performs tasks autonomously using the current policy πi and the

Task Sentinel model Sentineli.
(b) Monitoring: The system determines whether the current task step is complete based

on both human supervision and signals from the Task Sentinel model (detailed in Sec-
tion 3.3). If completed, it proceeds to the next step; otherwise, a rewind or intervention
is requested.

(c) Rewind and Correction: This is a core interactive capability on GCENT, detailed in
Section 3.4 (highlighted in pink in Figure 1). It enables state restoration and corrective
demonstration.

(d) Data Aggregation: After completion or correction of the task, the effective trajectory
data, particularly the successful corrective trajectories Dcorrect from step (2c), are
aggregated in the dataset Di+1.

3. Retraining: The updated dataset Di+1 is then used to fine-tune both policy model and Task
Sentinel model, yielding new versions πi+1 and Sentineli+1. These updated models are then
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Figure 3: Labels in sandwich assembly task. It shows the mode transitions among four core
interaction modes: “Intervention”, “Rewind, “Inference” and “Awaiting Intervention”. The first
five plots were in mode “Inference”. In plot 6, GCENT detected an incorrect grasp when the robot
attempted to pick up the ham, and thus transitioned to “Awaiting Intervention”. The plot 7 shows the
“Intervention” mode when the operator pressed the side button and the policy was paused. Afterwards,
the operator controlled the robot to grasp the ham correctly. Subsequently, plot 9 shows the operator
put the robot back to the “Inference” mode for autonomous operation by pressing the Y button. In
plot 12, the Task Sentinel detected a misplacement of the ham and requested intervention from the
operator. The operator then long-pressed the X button to rewind the robot to an appropriate historical
state. Then the operator controlled the robot to grasp the ham again, and transitioned the robot back
to “Inference”. In the end the robot proceeded to pick lettuce and another slice of bread to complete
the entire task.

deployed on the robot, and the deployment cycle (step 2) is further repeated. This iterative
process continues until the robot can complete tasks and reliably monitor the task status
autonomously.

Our data pipeline logs real-time data on the robot, including multi-view observations (ot), joint states
(jointst), policy actions, instructions, and other mode labels. This data is first saved locally in HDF5
format, then validated, and uploaded to the cloud. Cloud services further process the data, including
frame alignment, step labeling, storage management, and more, before model training begins.

The GCENT data collecting system automatically logs precise mode labels to the data stream. There
are four modes: “Intervention”, “Rewind”, “Inference”, and “Awaiting Intervention”. The trajectory
segments labeled “Intervention”, denoted as {(oτ , ahuman

τ )}, are automatically identified as high
quality supervised samples for training πi. The “Awaiting Intervention” mode is autonomously
determined by the Sentinel. This fine-grained labeling enables GCENT to efficiently capture real-
world interaction data that are crucial to addressing model weaknesses.

3.3 Task Sentinel: A Multimodal Large Language Model-based Robot Step Detection Model

In addition to human-gated intervention, we designed an autonomous mechanism, the Task Sentinel,
for robot to determine when intervention is necessary. This model, inspired by the reward model
architecture in [6], takes the current image observation ot and task instruction ltask as input at time t.
As shown in Equation 1, the model outputs a boolean value zt indicating the completion status of the
current step:

zt := Sentinel(ot, ltask) ∈ {0, 1} (1)
When the step is completed, denoted as zt = 1, the robot automatically proceeds to next step. If it is
not completed within a predefined time Tmax (i.e., zt = 0 and ∆t > Tmax), GCENT transitions to the
“Awaiting Intervention” mode until a human operator intervenes, as described by the condition:

if (zt = 0 and ∆t > Tmax), then request human intervention. (2)

Unlike methods similar to DAgger [46], we chose not to explicitly detect exact failure moments. This
decision stems from the significant challenge of accurately identifying failure instances, particularly
with limited data. The types and frequencies of errors can vary at different stages of model training. In
contrast, the definition of successful task (or sub-task) completion remains clear and stable, rendering
it more suitable for training robust models under the GCENT paradigm.

The Task Sentinel model constantly monitors the task execution. Tasks are decomposed into atomic
action steps (e.g., grasp, place, push, press), and human annotators identify the start and end frames
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for each step. We designates the frames within the final second of a successfully executed step as
completed, while all other frames as not completed. It converts the training of Task Sentinel model
into a binary classification task.

During deployment, we combine both Task Sentinel and human supervision (Human-Gated mode)
to enhance data collection efficiency in GCENT. In Human-Gated mode, an operator continuously
monitors the robot’s actions, and intervenes immediately if any error occurs. As depicted in Figure 1,
during the early stages of GCENT iteration, data collectors primarily use the Human-Gated method on
a single robot due to low model success rate. As iterations progress and model performance improves,
the Task Sentinel mechanism enables a single operator to monitor multiple robots simultaneously,
requesting intervention only when necessary. Task sentinel is a key factor for scaling the GCENT
approach to a one-operator-multiple-robots system, significantly improving operational efficiency
and system safety.

3.4 Rewind and Correction Mechanism

As depicted in Figure 3, when the Task Sentinel requests intervention, or if the operator decides so, the
operator can press the X button to trigger a rewind operation. The system maintains a real-time state
buffer of the past 3 seconds on the robot itself. When rewind mode is initiated, the system restores
the robot to the selected historical state st−k. After state rewind, the operator can apply physical
perturbations, and provide a correction demonstration. The rewind and correction mechanism is a
core interactive feature of GCENT, enabling efficient recovery and precise corrections.

4 Experiments

This section demonstrates that GCENT serves as an efficient and cost-effective data collection strategy,
capable of achieving significant performance improvements across diverse real-world tasks with
limited data. Specifically, we addresses the following questions:

• Q1: Can GCENT achieve superior performance compared to alternative data collection
strategies?

• Q2: Can GCENT improve data efficiency and reduce human supervision costs, enabling
one-to-many robot supervision?

• Q3: How do different rewind strategies impact policy performance?

4.1 Experimental Setup

We fine-tune the policy π from the GO-1 embodied foundation model [1], pre-train on thousands of
hours of robot manipulation data. All data collection and evaluation are performed on the AgiBot
G01 platform. Task Sentinel model is built upon the InternVL 2.5 2B backbone [7] with an additional
MLP-based binary classifier head.

The policy π is trained using only the human intervention segments from GCENT data, while Task
Sentinel is trained on the full GCENT dataset. We fine-tune the model for 100 epochs using 1 A800
node in each iteration, which takes approximately 16 hours. To ensure practical relevance and task
diversity, we designed four tasks based on real-world applications.

• Sandwich Assembly: Eight sequential bi-manual pick-and-place actions to stack ingredients
into a sandwich.

• Connector Insertion: Grasp and insert a component into a tight terminal, requiring fine
contact-rich control.

• Microwave-Heating: Completing a microwave heating task requires five different atomic
operations including pull, pick, place, push, and press.

• Typing: Type out text using a small keyboard, including back-space handling for instruction-
following evaluation.

We adopt a batched DAgger-style iteration [55]. Each task starts with 20 trajectories via passive
data collection, followed by 4 GCENT iterations, one of which includes 20 demonstrations, until
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the average score surpasses 0.9. We compare three strategies under equal data volume: (1) Passive
Data Collection (PDC), (2) Adversarial Data Collection (ADC), and (3) GCENT. Tasks completed 10
trials with average scores as performance metrics. The 1.0 score indicates complete success, while
partial completions received proportional values. This approach offers more detailed measurement
than binary success rates.

4.2 Q1: Can GCENT Lead to Better Performance?

Table 1: Comparison of average scores across data collection methodologies for four tasks.

Task Traj. Passive Adversarial GCENT (Ours)

Sandwich Assembly

20 (warmup) 0.28 ± 0.06 0.23 ± 0.04 -
40 - - 0.69 ± 0.07
60 0.30 ± 0.03 0.59 ± 0.14 0.79 ± 0.08
80 - - 0.76 ± 0.05
100 0.45 ± 0.02 0.53 ± 0.15 0.81 ± 0.04
120 - - 0.91 ± 0.01

Connector Insertion
20 (warmup) 0.00 ± 0.00 0.64 ± 0.07 -
40 0.10 ± 0.09 0.75 ± 0.08 0.64 ± 0.09
60 0.40 ± 0.15 0.82 ± 0.09 0.90 ± 0.05

Microwave-Heating

20 (warmup) 0.36 ± 0.07 0.48 ± 0.05 -
40 - - 0.74 ± 0.06
60 0.48 ± 0.06 0.72 ± 0.09 0.89 ± 0.03
80 0.55 ± 0.05 0.76 ± 0.11 0.97 ± 0.01

Typing

20 (warmup) 0.11 ± 0.05 0.10 ± 0.07 -
40 - - 0.26 ± 0.08
60 0.18 ± 0.10 0.05 ± 0.03 0.78 ± 0.09
80 - - 0.85 ± 0.06
100 0.10 ± 0.05 0.03 ± 0.02 0.95 ± 0.03

Average
20 (warmup) 0.19 0.36 -
60 0.26 0.48 0.84
Final Round 0.38 0.53 0.93

Table 1 shows that GCENT achieves the highest performance across all tasks, with an average final
score of 0.93, 55% improvement over passive methods and 40% over ADC under identical data
budgets. All tasks achieve an average score exceeding 0.9 within 3-5 GCENT rounds. In the most
challenging task, sandwich assembly, GCENT reaches 0.91 in the fifth round, while microwave and
connector tasks converge earlier. The GCENT approach demonstrated superior efficiency compared
to both passive and adversarial collection methods, requiring significantly fewer data samples while
simultaneously achieving a higher performance ceiling. In the typing task, when other methods
plateaued, GCENT still maintained a 0.95 score through its superior sampling strategy.

Passive Data Collection (PDC) assume all samples are equally important. However, in robotic
manipulation, task success often depends on critical moments, like precise alignment or following
instructions, that make up only a small part of the data but have a huge impact. These crucial samples
are poorly learned by conventional methods.

Adversarial Data Collection (ADC) addresses this limitation by introducing adversarial dynamics
during the collection process, thereby improving learning efficiency on critical samples. However,
manually crafted failures provide limited coverage and inadequately capture the diverse error patterns
encountered during policy deployment. Furthermore, as policies evolve, the distribution of critical
failure states shifts dynamically, reducing the effectiveness of static adversarial scenarios over time.
In contrast, GCENT employs autonomous policy execution to identify critical samples dynamically,
adjusting their representation in the dataset through rewind and invention mechanisms. This approach
yields a higher-quality dataset that prioritizes learning from the most informative failure states,
resulting in substantial performance improvements across diverse tasks.

Empirical results show that GCENT achieves the most significant performance improvements during
the initial iteration, while subsequent rounds tend to plateau or even exhibit slight regressions. This
trend may be attributed to limitations in the evaluation protocol, which struggles to capture subtle
improvements across iterations. This behavior reveals an important difference between artificial
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failure cases and real errors that arise during model execution: naturally occurring errors provide
more valuable learning signals. With continued training, GCENT models are able to overcome these
intermediate plateaus and ultimately converge to consistently high performance levels.

Figure 4: Comparison of data efficiency across
methods. GCENT achieves 0.9+ task score with
significantly fewer frames. At the same frame
count, GCENT improves model performance by
an average of 40%; at the same performance level,
GCENT requires only 44.5% of the frames com-
pared to passive data collection on average.

Figure 5: Intervention rates decreased con-
sistently across all tasks as iteration rounds
progressed. The typing task, however, exhib-
ited a slight rebound in the final round specifi-
cally, as rewind mechanism proportions were
intentionally increased only at this terminal
stage.

4.3 Q2: Can GCENT Improve Data Efficiency?

Figure 4 demonstrates that GCENT achieves comparable or superior performance using only 44.5%
of the frames required by alternative methods. Notably, in the instruction-following task (typing),
GCENT attains performance scores exceeding 0.9 with merely 30k frames. Despite utilizing only
human intervention segments for training, GCENT surpasses other approaches due to the enhanced
quality of data.

As shown in Figure 5, the human intervention rate, defined as the proportion of frames requiring
intervention, decreases significantly over successive GCENT iterations. This reflects continuous
policy improvement and a reduced need for human oversight, enabling more efficient parallel
supervision of multiple robots.

To assess the scalability of the GCENT framework in single-operator-multi-robot configurations,
we conducted a dual-robot experiment with Task Sentinel assistance. As presented in Table 2,
we evaluated policy models at 40%, 60%, and 80% success rates on the sandwich assembly task,
measuring both intervention rates and collection efficiency.

Collected frames represent the combined data collected from both robots. Paused frames measure the
waiting time from Task Sentinel’s intervention request to operator response. Collection efficiency is
calculated by converting the effective frames (collected frames minus paused frames) into a human
efficiency ratio, with a maximum of 2.0 for single-operator-dual-robot operation.

Experimental results demonstrate that despite a low model success rate of 40%, the system still
achieves a collection efficiency of 1.86, which increases progressively with improved policy per-
formance. This finding establishes that GCENT enhances both data efficiency and quality while
substantially reducing human labor costs. These results underscore GCENT’s potential for scal-
able multi-robot supervision and establish a foundation for future extensions to fully concurrent
single-operator-N-robot deployments through systematic optimization.

4.4 Q3: How do rewind strategies make impact?

We observed that the rewind mechanism produces different effects at various stages of GCENT.
During initial stages, direct intervention without rewinding enables the model to develop failure
recovery capabilities, thereby enhancing overall task performance. In subsequent stages, after
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Table 2: Comparison of data collection efficiency across models with varying success rates under a
one-human-two-robot setup in the sandwich task.

Metric 40% Success Rate 60% Success Rate 80% Success Rate
Intervention Rate (%) 47 39 27
Collected Frames 52,197 61,639 48,523
Paused Frames 3,746 2,931 1,831
Collection Efficiency 1.86 1.90 1.92

achieving higher success rates, activating the rewind mechanism substantially improves first-attempt
success rates by eliminating redundant error sequences and refining trajectory quality.

To validate our findings, we conducted controlled experiments on the sandwich assembly task
using models with initial success rates of 20% and 80%. We compared two intervention strategies:
(1) Direct Intervention and (2) Rewind. As presented in Table 3, the results strongly support our
observations: during early stages, direct intervention strategy enables models to learn from corrective
demonstrations and enhance robustness through failure recovery mechanisms. In later stages, the
rewind strategy facilitates optimal trajectory learning, reduces error attempts, and improves both
efficiency and final performance.

Table 3: Comparison of rewind strategies across training stages in the sandwich assembly task.
Direct intervention demonstrates superior performance during early stages, while rewind enhances
performance in later stages.

Rewind Strategy Start at 20% Start at 80%
Direct Intervention 0.69 ± 0.07 0.84 ± 0.03
Rewind 0.50 ± 0.06 0.91 ± 0.01

5 Conclusion

Training high success rate and deployable real-world robot policies, particularly Vision-Language-
Action (VLA) models, faces a major bottleneck in data collection. Passive Data Collection is costly,
inefficient, and difficult to scale. To address this, we introduce GCENT, a scalable training paradigm
for real-world robot policy deployment. GCENT introduces Human Rewind-and-Refine Guidance,
of which human operators intervene only upon failure, and a rewind mechanism restores the robot to
a valid prior state, to collect corrective demonstrations focused on failure recovery.

Empirical results show that GCENT improves both data efficiency and final task success rates by
over 40% compared to state-of-the-art collection methods. We further propose a Task Sentinel
mechanism that allows the model to autonomously detect potential failures and proactively request
human intervention, thereby significantly reducing the need for laborious human monitoring. As
the policy improves, the frequency of intervention declines, ultimately enabling efficient 1-to-N
supervision, where a single human can oversee multiple robots. This is crucial for a scalable data
collection system.

In summary, GCENT provides a practical, efficient, and scalable framework for training high-
performance, deployable robot policies. Its scalability based on Task Sentinel has the potential to
significantly lower the cost of robot learning and accelerate the real-world deployment of intelligent
robotic systems.

Limitations. While our current framework is largely automated, manual involvement is still required
for step annotation and verification. Our multi-robot control system presents operational challenges,
requiring complex initialization procedures before each teleoperation session. Future work will
develop more user-friendly systems for larger-scale deployments. Additionally, we have not thor-
oughly investigated the failed trajectories collected by Genie Centurion; future studies will utilize
post-training algorithms to better leverage these negative examples.
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A Hardware Setup

We used the Genie-1 general-purpose humanoid robot for all experiments. The robot has 20 degrees
of freedom, including 7-DoF arms capable of handling up to 5 kg per arm, and a waist joint for pitch
and vertical motion. The arms offer high-precision control with ±0.1 mm repeatability, enabling
reliable execution of long-horizon, bimanual tasks.

Each end-effector is equipped with one RGB-D camera or one fisheye camera, and a six-axis force
sensor. The head includes an additional RGB-D and fisheye camera array, providing full-scene
perception.

B Training Details

B.1 Hyperparameter

Table 4 summarizes the key hyperparameters used in our experiments.

Hyperparameter Value
Learning rate 2e-5
Batch size 16 × 8
Input image size 3×224×224
Weight decay 0.01
Action chunk 30
Infer denoise timesteps 5
Train denoise timesteps 1000

Table 4: Key hyperparameters used in our training process.

B.2 Data Augmentation

During data preprocessing, we enhanced the input images through three augmentation strategies:

1. Color Jitter: We stochastically adjusted brightness (±0.3), contrast (±0.4), saturation (±0.5),
and hue (±0.03) with 50% probability to enhance the model’s invariance to illumination and
color variations.

2. Noise and Blur: We applied random Gaussian, Laplacian, or Poisson noise (intensity:
0-5% of pixel values) with 50% probability. Additionally, we implemented average blur
(kernel size: 2-7 pixels) with 50% probability to simulate sensor noise and motion artifacts
encountered in real-world deployments.

3. Image Dropout: We implemented a controlled dropout mechanism wherein specific visual
inputs (head, left, and right camera images) were replaced with uniform color fields based
on ImageNet means at 10% probability, simulating sensor failures and encouraging robust
feature extraction under incomplete observational conditions.

These augmentation techniques enhanced the model’s generalizability by increasing data diversity,
simulating environmental perturbations, and enforcing adaptation to partial information scenarios
which is a critical factors for robust performance in real-world applications.

B.3 Fine-tune Details

To optimize computational efficiency and accelerate convergence, we implemented three methodolog-
ical refinements to the training pipeline. First, we computed inter-frame joint angle differentials and
established a minimal motion threshold (π/180/30 radians). Frames exhibiting sub-threshold angular
displacement were classified as static and subsequently excluded from the training data.

Second, we transformed raw joint angle measurements into end-effector pose representations. Specif-
ically, we derived the differential pose between consecutive frames based on forward kinematics.
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Figure 6: Sequence of four real-world manipulation tasks demonstrated in our experiments: (a)
sandwich assembly, (b) connector insertion, (c) microwave-heating, and (d) typing.

This relative pose-based representation provided more precise action parameterization for robotic
manipulation tasks.

Finally, we implemented dimension-wise min-max normalization on all action components, constrain-
ing values to the [-1, 1] interval. This standardization mitigated the adverse effects of heterogeneous
scaling across action dimensions, promoting gradient stability during backpropagation and facilitating
more efficient optimization dynamics throughout the training process.

C Task Visualization

Visual examples of the four tasks are shown in Figure 6.

Sandwich Assembly: The robot must use two slices of bread, a piece of bacon, and a leaf of lettuce
to assemble a sandwich. The entire process involves eight sequential pick-and-place operations that
require bimanual coordination. The ingredients must be stacked neatly in the correct order. This task
primarily evaluates the robot’s ability to perform long-horizon planning and dual-arm manipulation.

Connector Insertion: The robot is tasked with picking up a hardware component and precisely
inserting it into a small connector at the correct angle. This task tests the model’s proficiency in
fine-grained manipulation under rich contact conditions.

Microwaving Heating: The robot needs to open a microwave, place the food item inside, close
the door, and press the heating button. The task involves executing a precise sequence of five
actions—pulling, grasping, placing, pushing, and pressing—all using both arms. It assesses the
robot’s bimanual manipulation capabilities in structured multi-step scenarios.

Typing Task: The robot must type a given user input on a compact keyboard, sequentially pressing
keys corresponding to the characters A, G, I, B, O, T, and the spacebar. If it makes a mistake, it must
press the delete key to correct the error. This task focuses on evaluating the model’s ability to follow
instructions accurately and perform precise, symbolic actions.
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